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Synthesis and characterization of hexaosmium carbonyl clusters
containing pyridine ligands: crystal and molecular structures of
[Os6(CO)15(ì4-ç

2-CO)(C5H5N)3], [Os6(CO)15(ì-H)(ì-CO)(ì3-O)-
(C5H5N)(ì-ç2-NC5H4)] and [Os6(CO)14(ì-H)(ì-CO)(MeCN)-
(C5H5N)(ì-ç2-NC5H4)]

Kelvin Sze-Yin Leung and Wing-Tak Wong*

Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong

Reaction of [Os6(CO)16(MeCN)2] with 1 equivalent of pyridine in CH2Cl2 at room temperature afforded three
new clusters: [Os6(CO)15(µ4-η

2-CO)(C5H5N)3] 1, [Os6(CO)15(µ-H)(µ-CO)(µ3-O)(C5H5N)(µ-η2-NC5H4)] 2 and
[Os6(CO)14(µ-H)(µ-CO)(MeCN)(C5H5N)(µ-η2-NC5H4)] 3 in 32, 10 and 25% yields respectively. Both clusters
2 and 3 contain an orthometallated pyridine ligand but with different metal core geometries. The molecular
structure of cluster 2 revealed the presence of a novel µ3-O group bridging three osmium centres.

High nuclearity carbonyl clusters have attracted interest owing
to the rapid expansion of cluster chemistry.1–3 Lewis and co-
workers 4 have reported that a novel µ4-η

2-CO bridging group
was observed in a bis(pyridine)hexaosmium cluster [Os6(CO)17-
(py)2] (py = pyridine) from the reaction of Os6(CO)18 with pyri-
dine. Apart from this cluster species, the dianionic penta-
osmium carbonyl cluster [Os5(CO)15]

22 was also isolated as the
major product in the same reaction. This finding represents the
pioneering work on N-donor ligands towards hexaosmium
cluster systems.4 However, to our knowledge, further explor-
ations on this hexanuclear system are limited. Therefore, we
have investigated whether or not other substituted derivatives
of Os6(CO)18 can be obtained from a more reactive starting
material, namely [Os6(CO)16(MeCN)2]. Establishing the struc-
tural and chemical properties of these high nuclearity species is
important for designing analogous systems containing func-
tionalized pyridines. We have reported some examples of tri-
osmium systems based on this principle recently.5 In this article
we describe the preparation and spectroscopic studies of three
new pyridine-containing hexaosmium clusters. Their molecular
structures have also been determined by single-crystal X-ray
crystallographic techniques.

Results and Discussion
Treatment of 1 equivalent pyridine with the preformed labile
bis(acetonitrile)hexaosmium carbonyl cluster [Os6(CO)16-
(MeCN)2] in CH2Cl2 at room temperature over a period of 24 h
led to a dark brown reaction mixture. Separation of products
by TLC on silica gave three major products: [Os6(CO)15(µ4-η

2-
CO)(C5H5N)3] 1, [Os6(CO)15(µ-H)(µ-CO)(µ3-O)(C5H5N)(µ-η2-
NC5H4)] 2 and [Os6(CO)14(µ-H)(µ-CO)(MeCN)(C5H5N)(µ-η2-
NC5H4)] 3 in 32, 10 and 25% yields respectively, see Scheme 1.
In addition several uncharacterized products in very low yields
were also obtained. However, it is interesting to note that
no significant amount of the [Os5(CO)15]

22 dianion and
[Os6(CO)17(py)2] were detected, although they are the major
products from the reaction of Os6(CO)18 and pyridine.4 Using
excess pyridine in the reaction led to a higher yield of cluster 1
(38%) at the expense of 2 (5%). However, treatment of cluster 2
with pyridine did not lead to the formation of 1. Therefore, 2 is
unlikely to be an intermediate for the formation of 1. The yield
of 3 is not significantly affected by excess pyridine.

All three new hexaosmium pyridine clusters were character-
ized by spectroscopic techniques and X-ray crystallography. A
perspective drawing of cluster 1 with the atomic numbering

scheme is shown in Fig. 1. Selected bond parameters are pre-
sented in Table 1. The metal core geometry of 1 can be
described as a trigonal bipyramid with a ‘spike’ metal atom
[Os(6)] appended to the equatorial plane of the bipyramid
which is essentially the same as that in the previously reported
[Os6(CO)17(py)2].

4 A salient structural feature of 1 is a CO lig-

Scheme 1 (i) CH2Cl2, room temperature
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and co-ordinated to the metal core in a dihapto fashion. This
co-ordination mode leads to considerable weakening of the CO
bond strength as evident from the solid state (KBr disc) IR
spectroscopic measurement (µ4-η

2-CO, 1340.7 cm21). A signifi-
cantly longer CO distance [1.41(6) Å] is also found for this
unusual co-ordination mode. This CO vector is essentially per-
pendicular to the least-squares plane defined by Os(2), Os(4)
and Os(5). It is interesting to note that in the ruthenium cluster
[Ru8(µ-H)2(µ6-η

2-CO)(CO)19(η
6-C16H16)] with a µ6-η

2-CO lig-
and recently reported by Johnson and co-workers,6 this kind of
CO perpendicular to the metal basal plane arrangement is also
present. As far as the electron counting is concerned, cluster 1
contains 88 cluster valence electrons (CVE) and is consistent
with ten metal–metal bonds observed in the structure according
to the effective atomic number (EAN) rule.

The molecular structure of cluster 2 is depicted in Fig. 2 and
some important bond parameters are given in Table 2. The
metal core can be described as an edge-bridging tetrahedron
with an additional ‘spike’ atom. A similar core geometry has
been observed in [Os6(CO)18(CNC6H4Me)2].

7 A novel struc-
tural feature of cluster 2 is that a µ3-oxo atom is embraced in the
semi-open environment described by Os(4), Os(5) and Os(6).
This bridging oxo group adopts a distorted ‘T’ shaped co-
ordination geometry with the angles Os(4)]O(17)]Os(6),
Os(4)]O(17)]Os(5) and Os(5)]O(17)]Os(6) of 87.3(6), 108.9(7)
and 152.6(8)8 respectively, which sum to a value of ca. 350.08.
The atom O(17) is slightly deviated (0.33 Å) from the plane
defined by Os(4)]Os(5)]Os(6). The capping modes of µ3-oxo 8a

Fig. 1 Molecular structure of cluster 1 showing the atomic labelling
scheme for non-hydrogen atoms

Table 1 Selected bond distances (Å) and angles (8) for cluster 1 

Os(1)]Os(2) 
Os(1)]Os(3) 
Os(1)]Os(4) 
Os(2)]Os(3) 
Os(2)]Os(4) 
Os(3)]Os(4) 
Os(2)]Os(5) 
Os(3)]Os(5) 
Os(4)]Os(5) 
 
Os(2)]Os(4)]Os(6) 
Os(4)]Os(6)]O(14) 

2.887(4) 
2.745(4) 
2.793(4) 
2.873(4) 
2.812(5) 
2.763(4) 
2.793(4) 
2.788(4) 
2.817(4) 
 
109.4(1) 
74(1) 

Os(4)]Os(6) 
Os(5)]N(1) 
Os(6)]N(2) 
Os(6)]N(3) 
Os(2)]C(14) 
Os(4)]C(14) 
Os(5)]C(14) 
Os(6)]O(14) 
C(14)]O(14) 
 
Os(6)]O(14)]C(14) 
Os(4)]C(14)]O(14) 

2.858(4) 
2.06(6) 
2.14(4) 
2.14(5) 
2.24(6) 
1.95(6) 
2.18(6) 
2.07(4) 
1.41(6) 
 
92(3) 

129(4) 

or µ4-oxo 8b in osmium cluster systems have been reported, and
numerous examples are also known in ruthenium systems.9–15

However, to our knowledge, there are no structurally character-
ized examples of the µ3-oxo group in a ‘T’ shaped environment
in an osmium system. Another interesting feature of cluster 2 is
the formation of an orthometallated pyridine ring that arises
from C]H fission to form a bridging hydride as evident from 1H
NMR spectroscopic studies. This triply-bridged Os(4)]Os(6)
distance [2.823(1) Å] is shorter than the corresponding distance
[2.858(4) Å] in cluster 1. Assuming that the µ-CO and µ3-O
groups act as two- and four-electron donors respectively, then
cluster 2 is a 90-electron species which is consistent with the
nine metal–metal bonds observed in the structure according to
the EAN rule.

A perspective drawing of cluster 3 with the atomic number-

Fig. 2 Molecular structure of cluster 2. Details as in Fig. 1

Table 2 Selected bond distances (Å) and angles (8) for cluster 2 

Os(1)]Os(2) 
Os(1)]Os(3) 
Os(1)]Os(4) 
Os(2)]Os(3) 
Os(2)]Os(4) 
Os(3)]Os(4) 
Os(2)]Os(5) 
Os(3)]Os(5) 
 
Os(4)]O(17)]Os(6) 
Os(4)]O(17)]Os(5) 

2.829(2) 
2.684(2) 
2.905(1) 
2.783(2) 
2.835(1) 
2.788(1) 
2.911(2) 
2.793(2) 
 
87.3(6) 

108.9(7) 

Os(4)]Os(6) 
Os(4)]O(17) 
Os(5)]O(17) 
Os(6)]O(17) 
Os(6)]N(1) 
Os(4)]C(17) 
Os(6)]N(2) 
 
 
Os(5)]O(17)]Os(6) 
 

2.823(1) 
2.07(2) 
2.09(2) 
2.02(2) 
2.09(2) 
2.08(3) 
2.13(2) 
 
 
152.6(8) 
 

Table 3 Selected bond distances (Å) and angles (8) for cluster 3 

Os(1)]Os(2) 
Os(1)]Os(3) 
Os(1)]Os(4) 
Os(2)]Os(3) 
Os(2)]Os(4) 
Os(2)]Os(5) 
Os(2)]Os(6) 
Os(3)]Os(4) 
Os(3)]Os(5) 
 
Os(3)]Os(5)]N(1) 
Os(4)]Os(6)]C(18) 

2.916(4) 
2.805(4) 
2.770(4) 
2.823(4) 
2.790(4) 
2.817(4) 
2.968(4) 
2.940(4) 
2.864(4) 
 
152(1) 
151(1) 

Os(4)]Os(6) 
Os(5)]Os(6) 
Os(6)]C(18) 
Os(5)]N(1) 
Os(6)]N(2) 
Os(6)]N(3) 
Os(6)]C(12) 
Os(4)]C(12) 
 
 
Os(1)]Os(3)]Os(5) 
Os(1)]Os(4)]Os(6) 

2.764(4) 
2.834(4) 
2.14(6) 
2.13(6) 
2.24(5) 
2.16(5) 
2.25(6) 
1.94(7) 
 
 
121.7(1) 
127.6(1) 
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Table 4 Spectroscopic data for clusters 1–3 

Cluster 

1

2

3 

IR,a ν(CO)/cm21 

2064ms, 2028s, 2014s, 2004s, 1983ms,
1962w, 1945ms

2091w, 2062s, 2032s, 2016ms, 1981w,
1956w

2072ms, 2029s, 2018s, 1999ms, 1978w,
1952w 

1H NMR,b δ 

8.75 (2 H7,79, dd, J = 6.8, 1.6), 8.74 (2 H1,19, dd, J = 6.7, 1.6), 8.63
(2 H4,49, dd, J = 6.4, 1.8), 7.90 (1 H9, tt, J = 7.6, 1.6), 7.77 (1 H3,
tt, J = 7.6, 1.7), 7.68 (1 H6, tt, J = 7.7, 1.7), 7.45 (2 H8,89, m), 7.31
(2 H2,29, m), 7.29 (2 H5,59, m) 
8.58 (2 H1,19, dd, J = 6.8, 1.3), 8.48 (1 H49, m), 7.62 (1 H5, dd,
J = 6.4, 1.5), 7.48 (1 H3, tt, J = 7.6, 1.3), 7.27 (2 H, m), 6.96–7.09
(1 H59, m), 6.82–6.92 (1 H6, m), 216.20 (1 H, s, OsH) 
8.61 (1 H7, m), 8.58 (2 H1,19, dd, J = 6.6, 1.5), 8.04 (1 H3, tt, J = 7.2,
1.6), 7.58 (2 H2,29, m), 7.43 (1 H4, dd, J = 6.2, 1.5), 6.72 (1 H5, m),
6.58 (1 H6, m), 215.30 (1 H, s, OsH) 

Mass spectrum,c m/z 

1826 (1827)

d

1760 (1719) e 

a In CH2Cl2. 
b In CD2Cl2; J values in Hz. c Simulated values given in parentheses. d No satisfactory mass spectrum. e [M 2 CH3CN]1. 

ing scheme is shown in Fig. 3. Some important bond param-
eters are tabulated in Table 3. The metal core arrangement of 3
can be described as a monocapped square pyramid with two
pyridine ligands in the co-ordination sphere. One of the pyri-
dine moieties acts as a bridging ligand in an orthometallated
fashion while the other behaves as a simple two-electron donor
ligand. The hydride, although not located by X-ray analysis,
was estimated to bridge across the Os(3)]Os(4) edge by poten-
tial energy calculations. An acetonitrile ligand is found to co-
ordinate to the Os(6) atom which is labile. The mass spectra of 3
revealed an intense ion envelope centred at m/z 1719 in addition
to the very weak signal of the parent ion at m/z 1760. We believe
this is an interesting compound that may lead to cluster species
with 86 CVE which could adopt a bicapped tetrahedron struc-
ture as in the parent cluster Os6(CO)18.

Experimental
All reactions were carried out under an atmosphere of dry
dinitrogen using standard Schlenk techniques. Dichloro-
methane was dried over CaH2 prior to use.16 Pyridine was pur-
chased from Aldrich and used as received. Vacuum pyrolysis of
Os3(CO)12 gave the hexaosmium cluster Os6(CO)18

17 and the
compound [Os6(CO)16(MeCN)2] was prepared by the literature
method.18 Infrared spectra were recorded on a Bio-Rad FTS-7
spectrometer using a 0.5 mm solution cell, 1H NMR spectra
on a Bruker DPX 300 NMR spectrometer using CD2Cl2 with
reference to SiMe4 (δ 0) and mass spectra on a Finnigan MAT
95 instrument with the fast atom bombardment (FAB) tech-
nique. Elemental analyses were conducted by Butterworth
Laboratories, UK. Routine separation of products in air was

Fig. 3 Molecular structure of cluster 3. Details as in Fig. 1

performed by thin-layer chromatography (TLC) on plates
coated with Merck Kieselgel 60 GF254.

Syntheses

The cluster [Os6(CO)16(MeCN)2] (50 mg, 0.03 mmol) was dis-
solved in CH2Cl2 (25 cm3) and stirred with dropwise addition of
1 equivalent of pyridine (2.42 cm3 diluted in 10 cm3 CH2Cl2)
under ambient conditions. After the reaction had proceeded for
24 h, the volume was reduced to 5 cm3 in vacuo. Subsequent
purification by TLC using hexane–CH2Cl2 (3 :4, v/v) as eluent
afforded three brown bands with Rf values of 0.55, 0.70 and
0.30 respectively. The clusters 1–3 were isolated as deep brown
solids in 32, 10 and 25% yields respectively (Found for cluster 1:
C, 20.2; H, 0.8; N, 2.0. Calc. for C31H15N3O16Os6: C, 20.4; H,
0.8; N, 2.3. Cluster 2: C, 17.9; H, 0.6; N, 1.6. Calc. for
C26H10N2O17Os6: C, 17.7; H, 0.6; N, 1.6. Cluster 3: C, 18.6;
H, 0.6; N, 2.6. Calc. for C27H13N3O15Os6: C, 18.4; H, 0.7; N,
2.4%). Table 4 summarizes the experimental data of IR, 1H
NMR and FAB mass spectroscopies.

Crystallography

Single crystals of clusters 1–3 suitable for X-ray crystallo-
graphic studies were mounted in Lindermann glass capillaries
or glass fibres using epoxy resin. Brown crystals of cluster 1
were obtained as a solvate of stoichiometry 1?CHCl3?EtOH by
slow evaporation of a toluene–CHCl3–ethanol solution at
210 8C for 2 d. Slow evaporation from a solution of cluster 2 in
toluene–CHCl3 at room temperature for 4 d afforded some rod-
shaped crystals while crystals of cluster 3 were obtained as a
solvate of stoichiometry 3?CHCl3 from a solution of toluene–
CHCl3 at room temperature after 2 d. Diffraction data were
collected at room temperature on an Enraf-Nonius CAD4 dif-
fractometer (for cluster 1) using graphite-monochromated Mo-
Kα radiation (λ = 0.710 73 Å) and the ω–2θ scan technique. For
clusters 2 and 3, data were collected on a MAR research
image plate scanner. A summary of the crystallographic data
and structure refinement is listed in Table 5. All intensity data
were corrected for Lorentz and polarization effects. An
absorption correction by the ψ scan method was applied for
structure 1. However, no absorption corrections were made
for 2 and 3. Space groups of all of the crystals were deter-
mined from a Laue symmetry check and their systematic
absences were confirmed by successful refinement of the
structures. The structures were solved by a combination of
direct methods and Fourier-difference techniques (SIR 92 19

for 1 and SHELXS 86 20 for 2 and 3). Structure refinements
were made on F by full-matrix least-squares analysis. The
hydrogen atoms of the organic moieties were generated in
their idealized positions whereas all metal hydrides were esti-
mated by potential energy calculations.21 All calculations were
performed on a Silicon-Graphics computer using the program
package TEXSAN.22

CCDC reference number 186/707.
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Table 5 Summary of crystal data and data collection parameters for clusters 1–3 

 

Empirical formula 
M 
Crystal colour, habit 
Crystal size/mm 
Crystal system 
Space group 
a/Å 
b/Å 
c/Å 
β/8 
U/Å3 
Z 
Dc/g cm23 
F(000) 
µ(Mo-Kα)/cm21 
ω Scan width/8 
2θ Range/8 
Scan speed/8 min21 
Transmission coefficients 
No. reflections collected 
No. unique reflections 
No. observed reflections [I > 3σ(I)] 
R 
R9 
g In weighting scheme 
Goodness of fit 
Maximum ∆/σ 
No. parameters 
Maximum, minimum density in

∆F map/e Å23, close to Os 

1 

C34H22Cl3N3O17Os6 
1992.12 
Brown, block 
0.12 × 0.18 × 0.21 
Monoclinic 
C2/c (no. 15) 
13.712(2) 
16.836(2) 
39.704(3) 
96.58(2) 
9105(1) 
8 
2.906 
7120 
169.15 
(0.55 1 0.35 tan θ) 
4–45 
16 
0.3155–1.0000 
6507 
6255 
2509 
0.086 
0.077 
0.002 
2.21 
0.01 
282 
0.85, 20.91 

2 

C26H10N2O17Os6 
1763.57 
Brown, block 
0.18 × 0.20 × 0.24 
Orthorhombic 
P212121 (no. 19) 
11.533(1) 
16.732(1) 
17.229(2) 
— 
3324.7(2) 
4 
3.523 
3088 
229.05 
— 
2–52 
— 
— 
29 148 
3533 
2992 
0.035 
0.049 
0.004 
2.23 
0.02 
235 
1.33, 22.58 

3 

C28H14Cl3N3O15Os6 
1879.99 
Brown, block 
0.11 × 0.13 × 0.19
Monoclinic 
C2/c (no. 15) 
37.667(2) 
10.840(1) 
19.711(1) 
106.94(2) 
7698(1) 
8 
3.244 
6640 
199.91 
— 
2–52 
— 
— 
24 887 
4813 
1825 
0.064 
0.083 
0.004 
1.92 
0.02 
247 
2.09, 23.12 
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